Problème de Lebesgue

De WikiOpenTruc
Révision datée du 28 avril 2017 à 11:21 par Admin (discussion | contributions) (Ensemble de diamètre 1)
Aller à : navigation, rechercher

Problème non résolu à ce jour

What is the minimum area of a convex shape that can cover every planar set of diameter one ? (the set may be rotated, translated or reflected to fit inside the shape).

Lié à cet autre problème : https://en.wikipedia.org/wiki/Moser's_worm_problem


Ensemble de diamètre 1

Le diamètre d'un ensemble de points est la distance entre ses 2 points les plus éloignés

  • Un ensemble de points disposés à l'intérieur du cercle unité (cercle de diamètre 1 (au sens usuel)) est un ensemble convexe de diamètre 1.
    • Surface = Pi x r x r = Pi/4 ~ 0,785398163...
  • n'importe quel triangle isocèle de cotés 1 et de base inférieure ou égale à 1 est un ensemble convexe de diamètre 1, et qui n'est pas contenu dans le cercle unité.
  • Un ensemble de points disposés à l'intérieur d'un triangle équilatéral de coté 1 est un ensemble convexe de diamètre 1.
    • Surface = base x hauteur / 2 = 1 x sqrt(3)/2 x 0.5 = sqrt(3)/4 ~ 0,433012702...
    • Forme intéressante, car elle n'est pas contenue dans le cercle unité (sur un dessin, c'est immédiat).
    • Les 3 sommets du triangle équilatéral de coté 1 réalisent la dispersion maximale possible pour 3 points (chacun des points est à distance maximum des 2 autres). Cette dispersion est elle-même supérieure à la dispersion de n points pour n > 3. (Impossible de rajouter un point supplémentaire (différents des 3 sommets) tel qu'il agrandisse le cercle exinscrit). Cela nous donne donc un majorant pour la solution du problème de Lebesgue. Le rayon du cercle exinscrit est 1/sqrt(3) ~ 0,577350269 et sa surface est Pi x r x r = Pi/3 = 1,047197551. C'est pas un majorant extraordinaire, mais c'est déjà ça.
  • Le carré de diagonale 1 est un ensemble convexe de diamètre 1. Mais ce carré est contenu dans le cercle unité. Ce n'est donc pas une forme très intéressante.
  • L'intersection Z de 3 disques de rayons 1 centrés sur 3 points A,B,C placés aux sommets d'un triangle équilatéral de coté 1 est aussi une surface possible pour un ensemble convexe de diamètre 1.
    • Il s'agit en fait d'un triangle équilatéral de coté 1 "un peu gonflé"
    • chaque angle d'un triangle équilatéral vaut 60°. Le secteur angulaire d'angle 60° d'un disque de rayon 1 a une surface de Pi/6 ~ 0,523598776... , cette surface est la somme du triangle équilatéral de coté 1 + un petit onglet. cet onglet vaut donc (Pi/6)-sqrt(3)/4 = 0,523598776-0,433012702 ~ 0,090586074. La surface de Z est donc 3 x 0,090586074 + sqrt(3)/4 = 0,271758221 + 0,433012702 = 0,704770923
    • Forme intéressante, car elle n'est pas contenue dans un disque de diamètre 1. Sur un dessin, cela est immédiat.
  • Le pentagone régulier : sauf erreur, on peut construire un pentagone régulier de diamètre 1 et qui ne tienne pas dans le cercle unité. En effet, comme pour le triangle équilatéral (et sans doute tous les polygones réguliers impairs, chaque sommet fait face à un milieu de coté. Si on inscrit un polygone régulier impair dans le cercle unité, il y a toujours de la marge pour tirer légèrement un sommet hors du cercle unité, tout en restant de diamètre 1 (faut faire un dessin pour le voir).


Pages connexes